If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12x^2-80x+100=0
a = 12; b = -80; c = +100;
Δ = b2-4ac
Δ = -802-4·12·100
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1600}=40$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-80)-40}{2*12}=\frac{40}{24} =1+2/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-80)+40}{2*12}=\frac{120}{24} =5 $
| 8m=5m-3 | | -2x+7=-12-3x | | 8m=5m−3 | | 12=3r-7r | | -10+8g=-2g | | 13v+52-4v=9v+3-4 | | 8x+56=100 | | 6x=3/2=3x+6 | | 4x+14-28=5x+4-28 | | 2(3x=4)-2x=4x-8 | | 6(2x-1)-5(x-3)=2(x+2 | | 2(x+5)=245÷10 | | 10x-10=21 | | 2(3-p)-17=14 | | x+4/2+6=-5 | | -21x+11=-121 | | 3k+3=90 | | 3+8q=6 | | x+6/4=10 | | 8v+16=18 | | 6x+4x+2=22 | | 5v-4=34 | | 2b-14=18 | | 8−r=3 | | 24/7=3x | | (2y+4)/12=(y+4)/7 | | 2(x+5)=245 | | 3x/4-8=-2 | | [=n=40 | | n(n^2+1)=10^6 | | 2x/9=-16 | | -6x-6=-5x-4x |